A remark on K-theory and S-categories

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K-theory for 2-categories

We establish an equivalence of homotopy theories between symmetric monoidal bicategories and connective spectra. For this, we develop the theory of Γ-objects in 2-categories. In the course of the proof we establish strictfication results of independent interest for symmetric monoidal bicategories and for diagrams of 2-categories. CONTENTS

متن کامل

On a remark of Loday about the Associahedron and Algebraic K-Theory

In his 2006 Cyclic Homology Course from Poland, J.L. Loday stated that the edges of the associahedron of any dimension can be labelled by elements of the Steinberg Group such that any 2-dimensional face represents a relation in the Steinberg Group. We prove his statement. We define a new group R(n) relevant in the study of the rotation distance between rooted planar binary trees .

متن کامل

Topological K-theory of equivariant singularity categories

We study the topological K-theory spectrum of the dg singularity category associated to a weighted projective complete intersection. We calculate the topological K-theory of the dg singularity category of a weighted projective hypersurface in terms of its Milnor fiber and monodromy operator, and, as an application, we obtain a lift of the Atiyah-Bott-Shapiro construction to the level of spectra.

متن کامل

The K-Theory of Triangulated Categories

4.1 Historical Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1014 4.3 Waldhausen...

متن کامل

A remark on simple scattering theory

Scattering theory between the fractional power H0 = κ−1(−∆)κ/2 (κ ≥ 1) of negative Laplacian and the Hamiltonian H = H0 + V perturbed by shortand longrange potentials considered in [10] is revisited and a new proof of the existence and asymptotic completeness of wave operators is given with utilizing the smooth operator technique. AMS Subject Classification: Primary 35P25, 81U05 ; Secondary 47A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 2004

ISSN: 0040-9383

DOI: 10.1016/j.top.2003.10.008